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Cutoff frequency of experimentally generated noise: A Melnikov approach
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The motion of an overdamped particle excited by colored noise in a bistable potential is discussed in chaotic
dynamics terms. A Melnikov approach is used to determine an appropriate cutoff frequency of experimentally
generated noise as a function of noise correlation ti8B&063-651X96)07909-3

PACS numbg(s): 05.40:+j, 05.45:+b

The problem of crossing a potential barrier under stochasand(3) the correlation timer is kept as small as possible to
tic excitation has been studied for many decades. Most of thapproximate closely the limit of white noise; howevey,, is
theoretical investigations were conducted for the limit ofobviously finite. It has been commonly assumed in the litera-
white Gaussian noise. Various approaches to the more reaure, e.g.,[3,4], that w¢ is sufficiently large if we,& wo,
istic case of colored noise have been found to yield contrawhere wy=U"(Xy,in). The purpose of this paper is to show
dictory results, especially for intermediate values of correlathat in order to perform a reliable experimant,; should be
tion time [1]. In this paper we approach this classical compared withe, rather than withw.
stochastic problem within the framework of chaotic dynam-  Using a substitutiory(t) = —U’(x) + &(t), Egs. (1) and
ics. This approach does not yield an explicit expression fo(3) may be rewritten in the form
mean passage time. It offers, however, useful qualitative pre- _
dictions, which may be important for experimental study. X()=y(1), (6)

We start with the classical Langevin equation
_ Y(H)=—[U"(0)+aly(t)—aU' () + V2D awy(t), (7)
X(t)=—U"(x)+&(1), ()
) ] ) i where in Eq.(7) we approximatedv(t) by wy(t) [see Eq.
whereU(x) is a potential with local maximum a=0 and  (5)] with N arbitrarily large but finite. Equations) and (7)
one or two local minima. Colored noisgt) of intensityD  gescribe a motion in the potentialU(x) of a particle with
has an exponentially decaying autocorrelation function nonlinear  damping [U"(x)+«] and  excitation
_ a—alt-s V2D awy(t). We note that this system may be investigated
(£(D)&(s))=aDe ’ @ by using a Melnikov approacfb—§]. In what follows we
with correlation timer=1/e. Such noise may be obtained by assumeJ(x) = —1/2x*+1/4x*. Originally, the Melnikov ap-
passing the standard white Gaussian noig€) through a  Proach was applied to systems with a perturbation consisting

linear filter of two terms: a harmonic excitation sinwt and a linear
_ damping — 6x, where\ and o are the amplitude and the
Et)=—a&(t)+ 2D aw(t). (3)  frequency, respectively, ané>0 is the linear damping co-

efficient[5]. The approach was applied to the case of non-
Following Rice[2], Gaussian white noise(t) may be ex- linear damping«(— 6+ ux?) in [6] and to the case of quasi-

pressed as periodic excitation \;Sin(wt+ ¢q)+-- - +ANSIN(wNt+ dn),
) whereN is finite, in[7]. Based on the work df7], the Melni-
w(t)=lim wy(t), (4 kov approach was extended 8] to multistable systems
N=+e with stochastic excitation approximated by E¢$. and (5).
N For each noise realization the expression for the Melnikov
WN(t)=N_1/22 st + @), 5) function corresponding to Eq$5), (6), and(7) is
k=1

Fu(ttits, ... tn)=—0g(a)+DC(N,t,a), (8
where w,=kow /N, w¢y is the cutoff frequency beyond
which the power spectrum vanishes, and the random phas#éiere, by applying the procedure introduced[%+8], the
@y are uniformly distributed on the intervid,2x]. In nearly ~ function g(a) induced by the damping of Ed7) can be
all theoretical studies it is convenient—and commonshown to be
practice—to assume that there is no frequency cuicdt, 12 1
the cutoff frequencywc, is infinity). In numerical simula- 9(@)=4a™"3+28/1%" %, ©)

tions of Eq.(1) a cutoff frequency is implicit in the fact that . . L
the integration step is finite. In analog simulations of Egs. and the functionC(N,t,«) induced by the approximation
wy(t) of the white noise is

N
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FIG. 1. Melnikov scale factoBy,(w) for three different param-
etersa: a;=1, a,=42, anday=11%; see Eq(11).

FIG. 2. The mean hopping rafefrom numerical simulations of
In Eq. (10) Egs. (5), (6), and (7) vs the parameterc. Cutoff frequency

Sy(w)= \/5’77(1) sech ww/Z\/;)/\/; (11) we = Cwy andf, is the corresponding theoretical value.

For a given total power of noise pumped into a system
is referred to as the Melnikov scale faci@l; see Fig. 1. The and for a given noise correlation time= 1/, a cutoff fre-
Melnikov necessary condition for the occurrence of chaoticquency that does not satisfy Ed2) can yield a significantly
jumps between the two wells is thBy, have simple zeros. different mean hopping rate than would be observed if Eq.
This means that chaotic jumps over a barrier cannot be oly12) were satisfied. This was checked in numerical simula-
served ifF ), is negative for alk. It follows from the theory tions of Eqgs.(6) and (7) for the parametersy=1.6x 10°,
of chaotic transporf8] that the mean hopping rate increasesN=300, D=0.35, and a few cutoff frequencies
as the average of the positive local maxima of the function=c,,. In all cases the conditiowy wo Was satisfied;

Fwm increases. also, the noise spectrum was practically flat in the whole
It is clear from Egs.(8)—(10) that the contribution t0 interval[0,wg,]. In Fig. 2 a mean hopping rafenormalized
Fu of white noise components with frequencies larger thano the theoretical valud, [9] is plotted as a function of
wcytis negligible only if for those frequencies the scale factorparameterc. For eachc the averaged rate corresponding to
Su(w) is negligibly small. The cutoff frequency should be 100 different noise realizations was determined. From the
selected accordingly. Failure to do so can significantly affecjependence shown in Fig. 2 it is clear thatder2.5 a cutoff
the mean hopping rate obtained in the experiment. The frefrequency is acceptable; i.e., the experimental valué isf
quency for whichSy (w) reaches its maximum is denoted by syfficiently close to its asymptotic valifg. We note that if
wy . Thus, noise components are most efficient in inducinghe cutoff frequency for an experiment is known, then the
jumps over a potential barrier if their frequency is close toshortest possible noise correlation timeonsistent with Eq.
the frequencywy, . From Eq.(11) it follows that wy~ Va; (12) is 7= (¢l wey)?.
see Fig. 1. The cutoff frequency should therefore satisfy the Our conclusions are as follows1) the Melnikov ap-
inequality proach makes it possible to select the cutoff frequengy
so that errors associated with that selection are negligibly
“’cut?c‘/z' (12 small; (2) depending upon the parameters of the problem, the
criterion wg,& wo=U"(Xmin) May be inadequate, especially

wherec>1 is sufficiently large. Then, all components with . . DM ;
if the noise correlation time is small.

frequency larger tham . have negligible contribution to the

sum in Eq.(10); see Fig. 1 and Ed11). This condition may The author wishes to acknowledge useful discussions
be stronger than the conditian,,& wg commonly used in  with E. Simiu of the Building and Fire Research Laboratory,
experiments. National Institute of Standards and Technology.
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